




Mission Update
• LRO is nominal
• Instruments are nominal
• LRO operations team and instrument 

operations teams are exceptional
• 3,039 days of lunar science 

(103 lunar days)

• Mini-RF is collecting data with 
Goldstone, Arecibo is getting back online

• Lunar eclipse on Jan. 31
• Oct. 20 –

International Observe the Moon Night
• 44% through a three* year extended mission –

The Cornerstone Mission 3

Lunar phase and libration, 2018
https://svs.gsfc.nasa.gov/4604



Mission Status - Orbit
• LRO remains in a “quasi-stable” 

orbit with a periapsis near the 
South Pole

• GRAIL data have proven 
invaluable in predicting our orbits

• LRO’s orbit now traces over a 
latitude ~87.5º
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The Benefit of a Long Lived Orbiter

• LRO-era impact craters found by LROC
(and others)

• SEP events recorded by CRaTER
• Volatile transport by LAMP, CRaTER, LEND
• High temporal resolution thermal variations by 

Diviner

• Synergies with other missions 
(LADEE, GRAIL, ARTEMIS, etc.)

• New modes of operation for Mini-RF, CRaTER, 
LOLA, and LAMP

• Operate long enough to see another initiative to 
return to the Moon!
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What is the future of LRO?

• LRO runs on the four “P’s”
– Proposals:

• We are in the midst of our current extended mission, 
ends on September 15, 2019*

– Papers:
• LRO science teams

continue to be 
productive

• The community uses
LRO data
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2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016	 2017	

LRO	 1	 5	 7	 12	 41	 61	 107	 128	 152	 176	 279	 309	

Non-LRO	 0	 0	 1	 1	 3	 31	 69	 132	 200	 248	 372	 414	
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What is the future of LRO?
• LRO runs on the four “P’s”

– Propellant:
• LRO has ~27 kg of fuel remaining (including line loss of 5 kg), 

and has used ~20 kg in the last 6 years
• LRO launched with 898 kg of hydrazine propellant
• 741 kg (82.5%) used to get into orbit
• 95.75 kg (10.7%) was allocated for orbit maintenance 

(station keeping and momentum unloads) during our initial 
quasi-circular Exploration Orbit from 9/15/09–9/15/10

• 61.25 kg (6.8%) was allocated for the Science Mission and margins.
• We have more than 47% of the hydrazine propellant that had been allocated 

for the LRO Science Mission.  We expect to continue careful propellant 
management so that LRO will have a useful lifetime of up to 11 years.

– Power:
• LRO’s solar panel provides power to the S/C
• Continuous monitoring of the power supply
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Data Driven Lunar Exploration
• "Science Enables Exploration, 

Exploration Enables Science”
• LRO is collected an array of lunar data characterizing

– Properties of the regolith
– Rock abundances
– Location of volatiles, esp. the polar regions
– Lighting conditions including permanently 

shadowed regions (PSRs)
– Temperatures including inside PSRs
– Composition
– Topography and slopes 

• While individually valuable, taken together the data 
enable comprehensive planning for a lunar landed 
mission

– Location of resources
– Landing site identification
– Traverse planning
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LOLA topography circa 2011

SLDEM Topography
Ernie Wright (NASA/GSFC/SVS)



What Data Does LRO Produce to 
Support Landing Site Characterization

• Surface characterization:
– LROC NAC (50 cm per pixel from 50 km orbit)
– LROC WAC 100 mpp (morphology, albedo, 

composition)
– Diviner Rock Abundance 

(Bandfield et al., 2011) and H-parameter 
(Hayne et al., 2018) at 128 ppd

– Diviner temperature
• Topography

– LROC NAC DTM (2 mpp)
– LOLA DTM (512 ppd)
– SLDEM
– The above provide:

• Slope
• Terrain Ruggedness Index
• Illumination
• Earth line-of-sight 9

Diviner Rock Abundance 
(Bandfield, et al., 2011)

Percentage of a surface 
(128 ppd) with rocks ~.5-1m 0%

0.1%



Earth Visibility Maps –
Access to Direct Earth Communication
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The average visibility of Earth (in percent of a full 18.6 year cycle) for 
the north (left) and south (right) polar regions. 
Full visibility and total lack of visibility are indicated by white and 
black respectively.



Lighting Maps - Access to Near Continuous Illumination
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Sites of maximum illumination in the north (a) and south (b) polar regions, over a 
grayscale map of average sun illumination. The numbers indicate the rank at
surface level found in table 3 of Mazarico et al. / Icarus 211 (2011) 1066–1081
For example, site #1 in the South is illuminated 89% of the time.



Surface Navigation/Trafficability
• LRO data, such as topography models from the 

Narrow Angle Camera and LOLA as well as 
temperature data derived from the Diviner, has 
enabled the development of a tool for use in 
surface traverse planning

• Based on topography from NAC and LOLA and 
known surface properties, one can estimate the 
energy required to traverse between different 
targets using a terra-mechanics model 

• We can calculate the illumination conditions 
along the traverse at any point in time
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Example of an optimized traverse located along nearly 
persistently illuminated points on the rim of Shackleton
crater (SR-1, SR-2, and SR-3) and the connecting ridge 
between Shackleton and de Gerlache crater (CR-1, CR-2, 
and CR-3).  (Speyerer et al., 2016).



LROC WAC TiO2 Estimates

• Sato et al. (2017) in Icarus
• Using a ratio of the 321 and 415 nm 

bands to estimate TiO2 content of 
basalts

• WAC multiband mosaics available at 
13http://lroc.sese.asu.edu/archive/popular_downloads



Global Surface Temperatures

• Williams et al., (2017, Icarus) used the extended temporal 
baseline of surface temperatures to illustrate the thermal 
response of the surface
– Red = brightness in Channel 1 (0.35–2.8μm)
– Green = minimum bolometric temperature
– Blue = maximum bolometric temperature 14



New LAMP Failsafe Door Open Mode:
A new emphasis on dayside dirunal variations 
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• LAMP’s new mode improves dayside 
spectral imaging data quality by increasing 
typical UV photon detection rates of 600-
3000 counts/sec up to 50,000 counts/sec 
(x15 to x80).  

• Searches for variability that otherwise 
would require trending months of data 
for statistics may be performed with 
individual LRO orbit strips like those 
displayed here.

• Previous data quality at left is noisy with 
sparse coverage in individual orbit tracks; 
right shows much improved map quality for 
the new mode. 

• Comes at the cost of increased calibration 
efforts, and faster 
detector gain degradation.

Maps: Before After (Prediction)

Orbit Strips: Before After (Real Data)



LRO Data Products

• All products are archived in the PDS and at the instrument team webpages
– LROC at http://wms.lroc.asu.edu/lroc/rdr_product_select

• Quickmap: quickmap.lroc.asu.edu

– LOLA at http://imbrium.mit.edu
– Diviner at http://www.diviner.ucla.edu/data
– Main PDS archive: http://pds-geosciences.wustl.edu/missions/lro/default.htm

• LAMP polar products, Mini-RF polar mosaics, etc.
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• Data from the LOLA and LROC instrument provides 
local and regional slope data.

• LROC NAC DTM’s provide localized topography tied to 
the LOLA frame (Apollo 17 below)
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Henriksen et al., 2017

Topography



Topography

• Data from the LOLA and LROC instrument provides 
local and regional slope data.

• LROC NAC DTM’s provide localized topography tied to 
the LOLA frame (Apollo 17 below)
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Henriksen et al., 2017



Topography

• Data from the LOLA and LROC instrument provides 
local and regional slope data.

• LROC NAC DTM’s provide localized topography tied to 
the LOLA frame (Apollo 17 below)

19Elevation (m)

Henriksen et al., 2017



LRO – The gift that 
keeps on giving

• Planning is underway for ESM4

• We are evaluating orbit options 
that enable new science

• Eager to support future lunar 
landed missions
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Portion of Jackson Crater central peak

http://lroc.sese.asu.edu/posts/992
Imaged area is 10 km from top to bottom

M1117602006LR



LRO: A Long Lived Mission
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LROC Shapefiles
• Anthropogenic Features
• Constellation Targets
• NAC DTMs
• Stereo Observations
• Featured Mosaic Observations
• IMP Locations
• Swirls
• Wrinkle Ridges
• Lobate Scarps
• Polar Lobate Scarp Locations
• Mare
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• Hiesinger (2011) Mare Age Units
• Hiesinger (2011) Mare Count Areas
• Copernican Craters
• Craters 5 to 20 km Diameter: 0� to 90�E
• Craters 5 to 20 km Diameter: 0� to 90�W
• Craters 5 to 20 km Diameter: 90�E to 180�E
• Craters 5 to 20 km Diameter: 90�W to 180�W
• Craters 5 to 20 km Diameter: North Pole
• Craters 5 to 20 km Diameter: South Pole

• http://lroc.sese.asu.edu/posts/978


